Engineering drought and salt tolerance in plants using SodERF3, a novel sugarcane ethylene responsive factor

نویسندگان

  • Luis E Trujillo
  • Carmen Menéndez
  • María E Ochogavía
  • Ingrid Hernández
  • Orlando Borrás
  • Raisa Rodríguez
  • Yamilet Coll
  • Juan G Arrieta
  • Alexander Banguela
  • Ricardo Ramírez
  • Lázaro Hernández
چکیده

The ability of plants to tolerate salt and drought conditions is crucial for agricultural production worldwide. The increased understanding of the regulatory networks controlling drought stress response has led to practical approaches for engineering salt and drought tolerance in plants. By a single-pass sequencing of randomly selected clones from a ë ZAP-cDNA library generated from ethephon-treated young sugarcane leaves, we identified an expressed sequence tag encoding a putative protein with a DNA-binding domain that is typically found in EREBP/ AP2-type transcription factors. The full-length cDNA clone, named SodERF3 (EMBL accession number AM493723) was further isolated from the excised library. SodERF3 encodes a 240 amino acid DNA-binding protein that acts as a transcriptional regulator of the Ethylene Responsive Factor (ERF) superfamily, but also contains a C-terminal short hydrophobic region resembling an ERF-associated amphiphilic repression-like motif, typical for class II ERFs. This protein binds to the GGC box, and its deduced amino acid sequence contains an N-terminal putative nuclear localization signal. SodERF3 is induced in sugar cane leaves by ethylene, abscisic acid, salt stress and wounding as judged by Northern and Western blots assays. Greenhouse grown transgenic tobacco plants (Nicotiana tabacum L. cv. SR1) expressing SodERF3 were found to display increased tolerance to drought and osmotic stress without any visible phenotypic change in growth and development. According to our results SodERF3 will be a valuable tool to assist the manipulation of plants to improve their stress tolerance

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Stress-Induced Sugarcane Gene Confers Tolerance to Drought, Salt and Oxidative Stress in Transgenic Tobacco Plants

BACKGROUND Drought is a major abiotic stress that affects crop productivity worldwide. Sugarcane can withstand periods of water scarcity during the final stage of culm maturation, during which sucrose accumulation occurs. Meanwhile, prolonged periods of drought can cause severe plant losses. METHODOLOGY/PRINCIPAL FINDINGS In a previous study, we evaluated the transcriptome of drought-stressed...

متن کامل

Transcriptional Activation of OsDERF1 in OsERF3 and OsAP2-39 Negatively Modulates Ethylene Synthesis and Drought Tolerance in Rice

The phytohormone ethylene is a key signaling molecule that regulates a variety of developmental processes and stress responses in plants. Transcriptional modulation is a pivotal process controlling ethylene synthesis, which further triggers the expression of stress-related genes and plant adaptation to stresses; however, it is unclear how this process is transcriptionally modulated in rice. In ...

متن کامل

Overexpression of ERF1-V from Haynaldia villosa Can Enhance the Resistance of Wheat to Powdery Mildew and Increase the Tolerance to Salt and Drought Stresses

The APETALA 2/Ethylene-responsive element binding factor (AP2/ERF) transcription factor gene family is widely involved in the biotic and abiotic stress regulation. Haynaldia villosa (VV, 2n = 14), a wild species of wheat, is a potential gene pool for wheat improvement. H. villosa confers high resistance to several wheat diseases and high tolerance to some abiotic stress. In this study, ERF1-V, ...

متن کامل

Drought Tolerance Conferred to Sugarcane by Association with Gluconacetobacter diazotrophicus: A Transcriptomic View of Hormone Pathways

Sugarcane interacts with particular types of beneficial nitrogen-fixing bacteria that provide fixed-nitrogen and plant growth hormones to host plants, promoting an increase in plant biomass. Other benefits, as enhanced tolerance to abiotic stresses have been reported to some diazotrophs. Here we aim to study the effects of the association between the diazotroph Gluconacetobacter diazotrophicus ...

متن کامل

Overexpression of a Stress-Responsive NAC Transcription Factor Gene ONAC022 Improves Drought and Salt Tolerance in Rice

The NAC transcription factors play critical roles in regulating stress responses in plants. However, the functions for many of the NAC family members in rice are yet to be identified. In the present study, a novel stress-responsive rice NAC gene, ONAC022, was identified. Expression of ONAC022 was induced by drought, high salinity, and abscisic acid (ABA). The ONAC022 protein was found to bind s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009